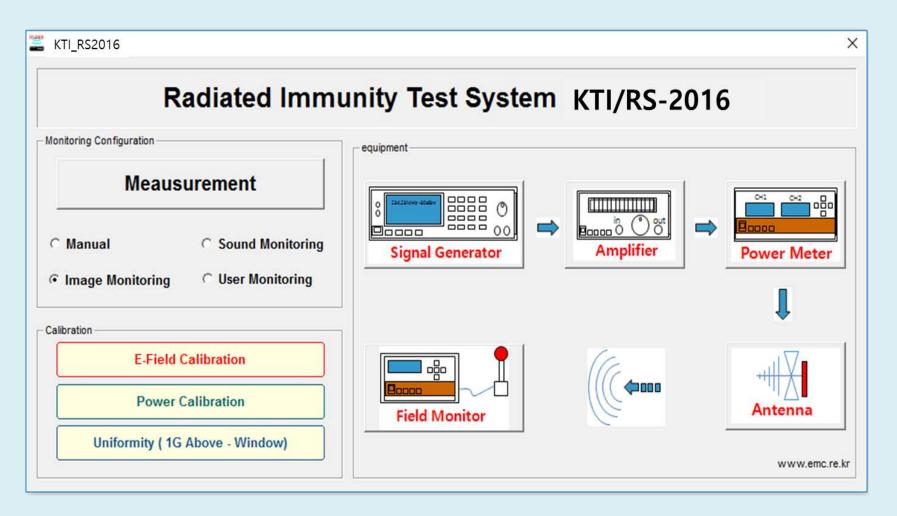
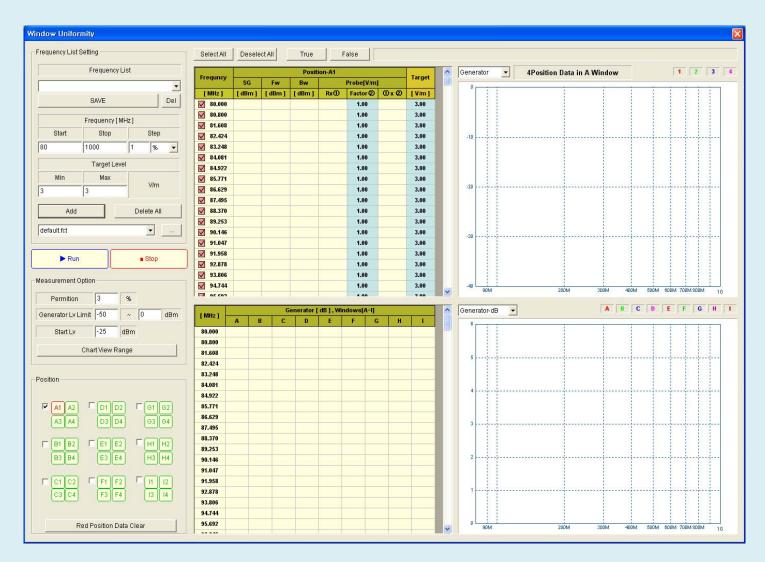
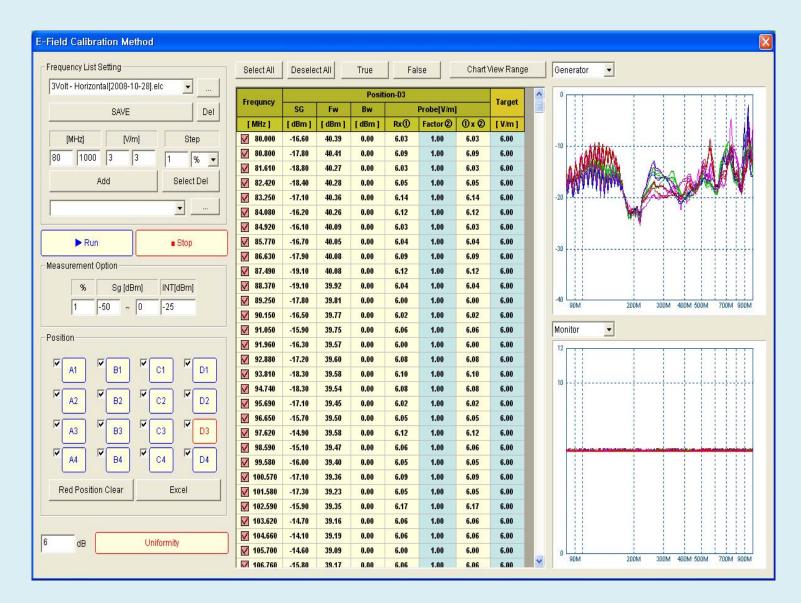
Never seen, never before technology Intelligent Radiated & Conducted Immunity test system, RS /CS 2016


- Optical automatic monitoring under the RS,CS test Image, various electric parameter, RPM, BER,FER, audio spectr um and SPL
- Full automatic control 26MHz-40GHz, 1-200V/m
- Excellent expandable configurations with GPIB and RF switch
- Lowest uncertainty
- Automatic multi function monitoring without visually manual monitoring. Fully comply with IEC 60118-13, ETSI 301 mobile test
- Automatic reporting functions of the failed frequencies, level and image
- Adjustable the field strength and level on failed frequencies
- Debugging function in order to find the failed field strength
- BER, FER and Sound Pressure Level (SPL) measurements for mobile phone , telephone set under the Radiated / Conducted immunity test

EMC engineering, ISO 17025 test lab. RF, EMC, Safety and Calibration since 1987


1. Intelligent Radiated & Conducted Immunity test system, RS&CS 2016

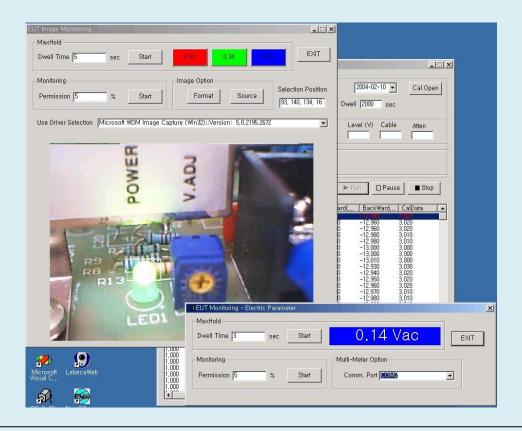
- Main menu


2. Uniformity measuring functions in accordance with 2016.2 new regulations for the 10 GHz higher band

Uniformity measuring functions in according to the new regulation, 2016.02

Examples of the uniformity test report and data

3. Debug Mode


This function provided the end user convenience to find the failed electromagnetic field strength and frequencies after radiated or conducted immunity test.

Debug Measureme	nt			
Frequency Option	MHz 🛓	Sg Lv 0.1dBm -28.20	Modulat AM INT 1 kH	
E.	F On		RF Off	
108.906	SG [dBm]	Fw [dBm]	Bw [dBm]	Monitor
Calibration	-28.20	-24.10	43.87	3.03
Debug	-28.20	-50.60	-63.02	
Monitoring		Not Mo	nitoring	

4. Multi monitoring, image and electric parameters on the screen

- Image degradation and various electric parameter of the EUT could be automatically monitored by KTI RS2016 S/W itself under the test.
- Each monitoring methods could be done at once and each frequencies..
- These automatic monitoring methods for RS and CS test are proposed by KTI at first in the world.
- These functions are very important to the immunity test in order to reduce the uncertainty.
- Image zone selection functions in order to reduce the uncertainty
- Statistical image treatment using an optimum color analyzing technology by KTI' unique techniques.

5. Power[dB_m] comparison, sound[dB_{spl}] level, and image monitoring[%] under the RS and CS test

- Examples of the IEC 60318-13 test report and data

	otion														
3Volt - Horizontal[2008-10-28].elc 🔹 Max 💌								•	F Power	-33	dBm	0.00			
-50 ~ [0) dB	m 🔽 🗚	M INT 1 kHz	80% _	2000	ms 3	%								
Selection											Sound	93	dBspl	PASS 88.308[dBspl]	10Hz~2(
	Decelo		and R Port	3	Acaba	T.		True	False Dana	.1	100	1.1	111111	1 1 1 1 1	
Select	Deseled	a la	rget (V/m)	1,	Apply			True	False Range	e	90				
	Prot	e Measure	ment			102		-			80			n	· · · · · · · · · · · · · · · · · · ·
Excel	Children I.	and Ci				► R	un	Stop	Debu	g	70				
	- es run	nini . Mari									60		4.4.444		
											50				
										-	40		nr		
Freq[MHz]	Generat		Forwar	NEW YORK	and the second se	rd[dBm]	E-Field		Pass/Fail	1	30		40	- Trit	Tim-
2 80.000	Cal	Mea	Cal	Mea	Cal	Mea	Cal	Mea	0.0000000000		L				
80.000	-33.80		-30.54		-33.70 -33.66		3.06				20	TTT	TTTT		
81.608	-34.10		-30.01		-33.49		3.07				10 100H	200H 300H	- Andrew Andr	2K 3K 4K 5K6K 1	K10K 20K
82.424	-34.70		-29.49		-33.24		3.09	_							
83.248	-35,80		-29.32		-33.34		3.05				Startin	a 75	%	Checkin	ig [0.00%]
84.081	-36.20		-28.84		-33.12		3.05						100		Sec. 1
			-28.55		-33.01		3.02								
	-35.90														
84.922	-35.90		-28.14		-32.65		3.02						Sec. 14	11111111111111	
84.922 85.771			-28.14		-32.65 -31.99		3.02						Trans.		
84.922 85.771 86.629	-34.70												-		
84.922 85.771 86.629 87.495	-34.70 -33.10		-27.54		-31.99		3.07								
84.922 85.771 86.629 87.495 88.370	-34.70 -33.10 -31.90		-27.54 -27.18		-31.99 -31.47		3.07 3.03								
84.922 85.771 86.629 87.495 88.370 89.253	-34.70 -33.10 -31.90 -31.20		-27.54 -27.18 -26.92		-31.99 -31.47 -31.03		3.07 3.03 3.08								
 84.922 85.771 86.629 87.495 88.370 89.253 90.146 	-34.70 -33.10 -31.90 -31.20 -31.30		-27.54 -27.18 -26.92 -26.90		-31.99 -31.47 -31.03 -30.92		3.07 3.03 3.08 3.04								
84.922 85.771 86.629 87.495 88.370 89.253 90.146 91.047	-34.70 -33.10 -31.90 -31.20 -31.30 -32.10		-27.54 -27.18 -26.92 -26.90 -26.97		-31.99 -31.47 -31.03 -30.92 -31.04		3.07 3.03 3.08 3.04 3.04								
84.922 85.771 85.771 85.771 85.771 85.771 85.771 85.771 85.771 87.495 88.370 89.253 90.146 91.047 91.958	-34.70 -33.10 -31.90 -31.20 -31.30 -32.10 -33.60		-27.54 -27.18 -26.92 -26.90 -26.97 -27.36		-31.99 -31.47 -31.03 -30.92 -31.04 -31.66		3.07 3.03 3.08 3.04 3.04 3.04								
2 84.922 2 85.771 2 85.771 2 85.771 2 86.29 2 87.495 2 88.370 2 90.146 2 91.047 2 91.558 2 92.878	-34.70 -33.10 -31.90 -31.20 -31.30 -32.10 -33.60 -34.30		-27.54 -27.18 -26.92 -26.90 -26.97 -27.36 -27.23		-31.99 -31.47 -31.03 -30.92 -31.04 -31.66 -32.01		3.07 3.03 3.08 3.04 3.04 3.04 3.04 3.04				Ç				
2 84.922 2 85.771 2 85.771 2 85.771 2 86.29 2 87.495 2 88.370 2 90.146 2 91.047 2 91.558 2 92.878	-34.70 -33.10 -31.90 -31.20 -31.30 -32.10 -33.60 -34.30 -34.40		-27.54 -27.18 -26.92 -26.90 -26.97 -27.36 -27.23 -27.55		-31.99 -31.47 -31.03 -30.92 -31.04 -31.66 -32.01 -32.98		3.07 3.03 3.08 3.04 3.04 3.04 3.04 3.09 3.09								
X 84.922 X 85.771 X 85.629 X 87.495 X 83.263 X 89.253 X 90.146 X 91.047 X 91.958 X 92.878 Y 93.806	-34.70 -33.10 -31.90 -31.20 -31.30 -32.10 -33.60 -34.30 -34.30 -34.40 -34.20		-27.54 -27.18 -26.92 -26.90 -26.97 -27.36 -27.23 -27.55 -28.15		-31.99 -31.47 -31.03 -30.92 -31.04 -31.66 -32.01 -32.98 -34.41		3.07 3.03 3.08 3.04 3.04 3.04 3.09 3.09 3.09								

5-1. Radiated, Conducted immunity test system

5-2. Radiated, Conducted immunity test system(IEC 60318-13)

- Fully meet the IEC 60118-13 hearing aids RS immunity test functions
- Input related interference level(IRIL) measuring function
- Overall input related interference level (OIRIL) measuring function
- Automatic audio processing function
- Audio calibrations.

6. Optical Image monitoring

Full optical system

- 200V/m up to 40GHz ,100 times zoom,
- Image, Pan/Tilt and auto focus.

1 pair optic cable

- Continuous image monitoring by the Analog density modulation.
- EMC engineer designed.
- Proven 200V/m radiated immunity by the Hyundai Motor.
- On screen display.

7. Mobile phone simulator control under the RS test

- Audio monitoring under the RS test
- BER, FER measurement under the RS test between mobile phone and call simulator.
- Fully compliance with IEC 61000-4-13 Amendment " Mobile phone RS test"
- Fully compliance with ETSI 301-489 series, RS test for mobile phone.
- Fixed tone and Pink tone measurement functions
- Radiated immunity test for GSM, DCS1800 and CDMA

The others all products of EUT monitoring under the RS test are available on the user demand.

